Chapter 6

6.1
a) Let X be a random variable with distribution $U(0,1)$.

To simulate a die, create a discrete random variable $\mathrm{Y}=1+$ floor $(\mathrm{x} * 6)$
b) Another way of doing part a)
6.3

Let $\mathrm{X}=1-\mathrm{U}$. Let x be in the interval $[0,1]$ Consider $\mathrm{u}=1-\mathrm{x}$ and observe that u is in $[0,1]$ if and only if x is in $[0,1]$. Therefore, $P(X=x)=P(U=1-x)=1$. Therefore X is uniformly distributed between 0 and 1 .
6.6

Reversing the process of generating an exponential distribution from a uniform distribution, we would take the values x from the $\operatorname{Exp}(2)$ random number generator and apply them to the formula $\mathrm{u}=1-\exp (-2 \mathrm{x})$ to get $\mathrm{U}(0,1)$.

6.8

Finding the inverse of the function
$u=1-1 /\left(x^{\wedge} 3\right)$
gives us $1-u=1 /\left(x^{\wedge} 3\right)$
$1 /(1-u)=x^{\wedge} 3$
or $x=[1 /(1-u)]^{\wedge} 1 / 3$ for u in $[0,1)$.
Since $1-\mathrm{u}$ is also uniformly distributed, we could also write
$x=[1 / u]^{\wedge} 1 / 3$ for u in $(0,1]$.

